On the Small Cycle Transversal of Planar Graphs

نویسندگان

  • Ge Xia
  • Yong Zhang
چکیده

We consider the problem of finding a k-edge transversal set that covers all (simple) cycles of length at most s in a planar graph, where s ≥ 3 is a constant. This problem, referred to as Small Cycle Transversal, is known to be NP-complete. We present a polynomial-time algorithm that computes a linear kernel of size 36sk for Small Cycle Transversal. In order to achieve this kernel, we extend the region decomposition technique of Alber et al. [J. ACM, 2004 ] by considering a unique region decomposition that is defined by shortest paths. Unlike the previous results on linear kernels of problems on planar graphs, our results are not subsumed by the recent meta-theorems on kernelization of Bodlaender et al. [FOCS, 2009 ].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernelization for Cycle Transversal Problems

We present new kernelization results for the s-cycle transversal problem for s > 3. In particular, we show a 6k kernel for 4-cycle transversal and a O(k) kernel for s-cycle transversal when s > 4. We prove the NP-completeness of s-cycle transversal on planar graphs and obtain a 74k kernel for 4-cycle transversal on planar graphs. We also give several kernelization results for a related problem ...

متن کامل

Subexponential Parameterized Odd Cycle Transversal on Planar Graphs

In the Odd Cycle Transversal (OCT) problem we are given a graph G on n vertices and an integer k, and the objective is to determine whether there exists a vertex set O in G of size at most k such that G \ O is bipartite. Reed, Smith, and Vetta [Oper. Res. Lett., 2004] gave an algorithm for OCT with running time 3knO(1). Assuming the exponential time hypothesis of Impagliazzo, Paturi and Zane, t...

متن کامل

On the M-polynomial of planar chemical graphs

Let $G$ be a graph and let $m_{i,j}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The $M$-polynomial of $G$ is $M(G;x,y) = sum_{ile j} m_{i,j}(G)x^iy^j$. With $M(G;x,y)$ in hands, numerous degree-based topological indices of $G$ can be routinely computed. In this note a formula for the $M$-polynomial of planar (chemical) graphs which have only vertices...

متن کامل

Approximate Min-max Relations for Odd Cycles in Planar Graphs

We study the ratio between the minimum size of an odd cycle vertex transversal and the maximum size of a collection of vertex-disjoint odd cycles in a planar graph. We show that this ratio is at most 10. For the corresponding edge version of this problem, Král and Voss recently proved that this ratio is at most 2; we also give a short proof of their result.

متن کامل

On the edge-connectivity of C_4-free graphs

Let $G$ be a connected graph of order $n$ and minimum degree $delta(G)$.The edge-connectivity $lambda(G)$ of $G$ is the minimum numberof edges whose removal renders $G$ disconnected. It is well-known that$lambda(G) leq delta(G)$,and if $lambda(G)=delta(G)$, then$G$ is said to be maximally edge-connected. A classical resultby Chartrand gives the sufficient condition $delta(G) geq frac{n-1}{2}$fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 412  شماره 

صفحات  -

تاریخ انتشار 2010