On the Small Cycle Transversal of Planar Graphs
نویسندگان
چکیده
We consider the problem of finding a k-edge transversal set that covers all (simple) cycles of length at most s in a planar graph, where s ≥ 3 is a constant. This problem, referred to as Small Cycle Transversal, is known to be NP-complete. We present a polynomial-time algorithm that computes a linear kernel of size 36sk for Small Cycle Transversal. In order to achieve this kernel, we extend the region decomposition technique of Alber et al. [J. ACM, 2004 ] by considering a unique region decomposition that is defined by shortest paths. Unlike the previous results on linear kernels of problems on planar graphs, our results are not subsumed by the recent meta-theorems on kernelization of Bodlaender et al. [FOCS, 2009 ].
منابع مشابه
Kernelization for Cycle Transversal Problems
We present new kernelization results for the s-cycle transversal problem for s > 3. In particular, we show a 6k kernel for 4-cycle transversal and a O(k) kernel for s-cycle transversal when s > 4. We prove the NP-completeness of s-cycle transversal on planar graphs and obtain a 74k kernel for 4-cycle transversal on planar graphs. We also give several kernelization results for a related problem ...
متن کاملSubexponential Parameterized Odd Cycle Transversal on Planar Graphs
In the Odd Cycle Transversal (OCT) problem we are given a graph G on n vertices and an integer k, and the objective is to determine whether there exists a vertex set O in G of size at most k such that G \ O is bipartite. Reed, Smith, and Vetta [Oper. Res. Lett., 2004] gave an algorithm for OCT with running time 3knO(1). Assuming the exponential time hypothesis of Impagliazzo, Paturi and Zane, t...
متن کاملOn the M-polynomial of planar chemical graphs
Let $G$ be a graph and let $m_{i,j}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The $M$-polynomial of $G$ is $M(G;x,y) = sum_{ile j} m_{i,j}(G)x^iy^j$. With $M(G;x,y)$ in hands, numerous degree-based topological indices of $G$ can be routinely computed. In this note a formula for the $M$-polynomial of planar (chemical) graphs which have only vertices...
متن کاملApproximate Min-max Relations for Odd Cycles in Planar Graphs
We study the ratio between the minimum size of an odd cycle vertex transversal and the maximum size of a collection of vertex-disjoint odd cycles in a planar graph. We show that this ratio is at most 10. For the corresponding edge version of this problem, Král and Voss recently proved that this ratio is at most 2; we also give a short proof of their result.
متن کاملOn the edge-connectivity of C_4-free graphs
Let $G$ be a connected graph of order $n$ and minimum degree $delta(G)$.The edge-connectivity $lambda(G)$ of $G$ is the minimum numberof edges whose removal renders $G$ disconnected. It is well-known that$lambda(G) leq delta(G)$,and if $lambda(G)=delta(G)$, then$G$ is said to be maximally edge-connected. A classical resultby Chartrand gives the sufficient condition $delta(G) geq frac{n-1}{2}$fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Theor. Comput. Sci.
دوره 412 شماره
صفحات -
تاریخ انتشار 2010